Результаты, опубликованные в Cell Reports, освещают важный процесс нормального созревания мозга и указывают на возможность того, что нарушение этого процесса может способствовать множественным заболеваниям мозга человека.
«Мы думаем, что аномалии в активности микроРНК-29, вероятно, являются общей темой при нарушениях развития нервной системы и даже при обычных поведенческих различиях у людей», – сказал старший автор Моханиш Дешмук, доктор философии, профессор кафедры клеточной биологии и физиологии UNC и член Центр неврологии UNC. «Наша работа предполагает, что повышение уровня miR-29, возможно, даже за счет его прямой доставки, может привести к терапевтической стратегии при расстройствах нервного развития, таких как аутизм."
miR-29 и созревание мозга
МикроРНК – это короткие участки рибонуклеиновой кислоты внутри клеток, которые регулируют экспрессию генов. Каждая микроРНК, или miR, может напрямую связываться с транскриптом РНК некоторых других генов, предотвращая ее трансляцию в белок. Таким образом, миРНК эффективно служат в качестве ингибиторов активности генов, а типичная микроРНК регулирует несколько генов таким образом, чтобы генетическая информация не подвергалась чрезмерной экспрессии.
Эти важные регуляторы интенсивно исследуются только в последние два десятилетия. Таким образом, еще многое предстоит узнать об их роли в здоровье и болезнях.
Дешмук и его коллеги намеревались найти микроРНК, участвующие в созревании мозга после рождения, фазе, которая у человека включает примерно первые 20 лет жизни.
Когда ученые искали микроРНК с большей активностью в мозге взрослой мыши, чем в мозге молодой мыши, один набор миРНК выделялся из остальных. Уровни семейства miR-29 были в 50-70 раз выше в мозге взрослых мышей, чем в мозге молодых мышей.
Исследователи изучили модель мыши, в которой гены семейства miR-29 были удалены только в головном мозге. Они заметили, что, хотя мыши родились нормально, у них вскоре развился ряд проблем, в том числе повторяющееся поведение, гиперактивность и другие аномалии, которые обычно наблюдаются в мышиных моделях аутизма и других расстройств нервного развития.
У многих развились тяжелые эпилептические припадки.
Чтобы понять, что вызвало эти аномалии, исследователи изучили активность генов в мозге мышей, сравнив ее с активностью в мозге мышей, у которых был miR-29.
Как и ожидалось, многие гены были намного активнее, когда miR-29 больше не было, чтобы блокировать их активность. Но ученые неожиданно обнаружили большой набор генов, связанных с клетками мозга, которые были менее активны в отсутствие miR-29.
Таинственный метилатор
При ключевой помощи соавтора Майкла Гринберга, доктора философии, профессора нейробиологии Гарвардского университета, исследователи в конечном итоге нашли объяснение этого загадочного снижения активности генов.
Одним из генов-мишеней, который обычно блокирует miR-29, является ген, кодирующий фермент под названием DNMT3A. Этот фермент вносит в ДНК специальные химические модификации, называемые CH-метилированием, чтобы заглушить гены в непосредственной близости. В мозге мышей активность гена DNMT3A обычно повышается при рождении, а затем резко снижается через несколько недель. Ученые обнаружили, что miR-29, который блокирует DNMT3A, обычно вызывает это резкое снижение.
Таким образом, у мышей, в мозгу которых отсутствует miR-29, DNMT3A не подавляется, а процесс CH-метилирования продолжается ненормально – и вместо этого продолжают подавляться многие гены клеток мозга, которые должны стать активными. Некоторые из этих генов и сам ген DNMT3A отсутствовали или были мутированы у людей с нарушениями психического развития, такими как аутизм, эпилепсия и шизофрения.
Чтобы подтвердить роль DNMT3A, ученые создали уникальную модель мыши, которая не позволяет miR-29 подавлять DNMT3A, но не затрагивает другие цели miR-29. Они показали, что это высвобождение DNMT3A само по себе приводит ко многим из тех же проблем, таких как судороги и ранняя смерть, которые наблюдались у мышей без miR-29.
Полученные данные подчеркивают и проясняют, что, вероятно, является решающим процессом в формировании мозга на поздней стадии его развития: отключение DNMT3A для высвобождения многих генов, которые должны быть более активными в мозге взрослого человека.
«Эти результаты являются первыми, кто идентифицирует miR-29 как важный регулятор метилирования CH и показывает, почему ограничение метилирования CH до критического периода важно для нормального созревания мозга», – сказал Дешмук.
Дешмук и его коллеги в настоящее время следят за тем, чтобы более подробно изучить, как недостаток miR-29 в различных наборах клеток головного мозга может вызвать такие нарушения, и в более общем плане они изучают, как активность miR-29 регулируется в детстве до тонкого настраивать функции мозга, тем самым давая людям черты, которые делают их уникальными личностями.